Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Design of Automotive Composites

2014-08-04
Design of Automotive Composites reports that successful designs of automotive composites occurred recently in this arena. The chapters consist of eleven technical papers selected from the Automotive Composites and other relevant sessions that the editors have been organizing for the SAE International World Congress over the past five years. The book is divided into four sections: o Body Structures o Powertrain Components o Suspension Components o Electrical and Alternative Vehicle Components The composite design examples presented in Design of Automotive Composites come from the major OEMs and top-tier suppliers and are most relevant to the automotive materials challenges currently faced by the industry. Many of the innovative ideas have already been implemented on existing or new model vehicles, although a great deal of innovation is still in the works.
Technical Paper

Dynamic Impact Simulation of Interaction between Non-Pneumatic Tire and Sand with Obstacle

2011-04-12
2011-01-0184
In this paper, the Finite Element Method (FEM) is used to model and simulate the dynamic interaction between non-pneumatic tire and sand with obstacle to investigate the influence of obstacle on performance of the non-pneumatic tire. The non-pneumatic tire consists of three major components: two inextensible circumferential membranes, a critical shear beam, and a group of deformable spokes. The non-pneumatic tire fabricated of segmented cylinders is illustrated and the FEM model for the tire is given in detail. The tire is treated as an elastic deformable body with the inertia effect included. Lebanon sand found in New Hampshire is used in this simulation because of the availability of a complete set of material properties in the literature. Modified Drucker-Prager/Cap plasticity constitutive law with hardening is utilized to model the sand. The obstacle is represented as an elastic body.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Technical Paper

A Study on a Prognosis Algorithm for PEMFC Lifetime Prediction Based on Durability Tests

2010-04-12
2010-01-0852
Of the fuel cells being studied, the proton exchange membrane fuel cell (PEMFC) is viewed as the most promising for transportation. Yet until today, the commercialization of the PEMFC has not been widespread in spite of its large expectation. Poor long term performances or durability, and high production and maintenance costs account for the main reasons. For the final commercialization of fuel cell in transportation field, the durability issue must be addressed, while the costs should be further brought down. In the meantime, health-monitoring and prognosis techniques are of great significance in ensuring the normal operation of the fuel cell and preventing or predicting its likely abrupt and catastrophic failure. In this paper, an analytical formulation of a damage accumulation law for fuel cell is presented.
Technical Paper

Coordinated Electric Supercharging and Turbo-Generation for a Diesel Engine

2010-04-12
2010-01-1228
Exhaust gas turbo-charging helps exploit the improved fuel efficiency of downsized engines by increasing the possible power density from these engines. However, turbo-charged engines exhibit poor transient performance, especially when accelerating from low speeds. In addition, during low-load operating regimes, when the exhaust gas is diverted past the turbine with a waste-gate or pushed through restricted vanes in a variable geometry turbine, there are lost opportunities for recovering energy from the enthalpy of the exhaust gas. Similar limitations can also be identified with mechanical supercharging systems. This paper proposes an electrical supercharging and turbo-generation system that overcomes some of these limitations. The system decouples the activation of the air compression and exhaust-energy recovery functions using a dedicated electrical energy storage buffer. Its main attributes fast speed of response to load changes and flexibility of control.
Technical Paper

Finite Element Simulation of Ring Rolling Process

2010-04-12
2010-01-0270
Three-dimensional simulation has become an indispensable approach to develop improved understanding of ring rolling technology, with validity as the basic requirement of the ring rolling simulation. Cold ring rolling is simple conceptually, however complex to analyze as the metal forming process is subject to coupled effects with multiple influencing factors such as sizes of rolls and ring blank, form geometry, material, process parameters, and frictional effects. Investigating the coupled thermal and plastic deformation behavior (the plastic deformation state and its development) in the deformation zone during the process is significant for predicting metal flow in order to control the geometric and tensile residual stress quality of deformed rings, and to provide for cycle time optimization of the cold ring rolling process.
Technical Paper

Dynamic Simulation of Interaction between Non-Pneumatic Tire and Sand

2010-04-12
2010-01-0377
In this paper, in support of developing an advanced non-pneumatic lunar tire, a dynamic interaction model between non-pneumatic tire and sand is presented using the Finite Element Method (FEM). This non-pneumatic tire is composed of three major components: a critical shear beam, two inextensible circumferential membranes, and deformable spokes. The non-pneumatic tire made of segmented cylinders is described in detail. The tire is treated as an elastic deformable body with the inertia effect is included. Lebanon sand found in New Hampshire is modeled as because of the availability of a complete set of material properties in the literature. The Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. Numerical results show contact pressure distribution, distributions of various stresses and strains, deformation of non-pneumatic tire, and deformation of sand.
Technical Paper

Roll Stability Control for Torsionally Compliant Vehicles

2010-04-12
2010-01-0102
Rollover prevention is now part of complete vehicle stability control systems for many vehicles. Given that rollover is predominantly associated with vehicles with high centers of gravity, the targeted vehicles for rollover protection include medium and heavy duty commercial vehicles. Unfortunately, the chassis designs of these vehicles are often so compliant in torsion that the ends of the vehicles may have significantly different roll responses at any given time. The potential need to assess and correct for the roll behavior of the front and rear ends of the vehicle is the subject of this paper. Most rollover mitigation research to date has used rigid chassis assumptions in modeling the vehicle. This paper deals with the roll control of vehicles with torsionally flexible chassis based on a yaw-correction system.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

A CFD Study of Losses in a Straight-Six Diesel Engine

1999-03-01
1999-01-0230
Using a previously validated and documented CFD methodology, this research simulated the flow field in the intake region (inlet duct, plenum, ports, valves, and cylinder) involving the four cylinders (#1, #3, #4, #6) of a straight-six IC engine. Each cylinder was studied with its intake valves set at high, medium and low valve lifts. All twelve viscous 3-D turbulent flow simulation models had high density, high quality computational grids and complete domains. Extremely fine grid density were applied for every simulation up to 1,000,000 finite volume cells. Results for all the cases presented here were declared “fully converged” and “grid independent”. The relative magnitude of total pressure losses in the entire intake region and loss mechanisms were documented here. It was found that the total pressure losses were caused by a number of flow mechanisms.
Technical Paper

The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car

1998-11-16
983051
Predictable handling of a racecar may be achieved by tailoring chassis stiffness so that roll stiffness between sprung and unsprung masses are due almost entirely to the suspension. In this work, the effects of overall chassis flexibility on roll stiffness and wheel camber response, will be determined using a finite element model (FEM) of a Winston Cup racecar chassis and suspension. The FEM of the chassis/suspension is built from an assembly of beam and shell elements using geometry measured from a typical Winston cup race configuration. Care has been taken to model internal constraints between degrees-of-freedom (DOF) at suspension to chassis connections, e.g. t ball and pin joints and internal releases. To validate the model, the change in wheel loads due to an applied jacking force that rolls the chassis agrees closely with measured data.
Technical Paper

Advanced Computational Methods for Predicting Flow Losses in Intake Regions of Diesel Engines

1997-02-24
970639
A computational methodology has been developed for loss prediction in intake regions of internal combustion engines. The methodology consists of a hierarchy of four major tasks: (1) proper computational modeling of flow physics; (2) exact geometry and high quality and generation; (3) discretization schemes for low numerical viscosity; and (4) higher order turbulence modeling. Only when these four tasks are dealt with properly will a computational simulation yield consistently accurate results. This methodology, which is has been successfully tested and validated against benchmark quality data for a wide variety of complex 2-D and 3-D laminar and turbulent flow situations, is applied here to a loss prediction problem from industry. Total pressure losses in the intake region (inlet duct, manifold, plenum, ports, valves, and cylinder) of a Caterpillar diesel engine are predicted computationally and compared to experimental data.
Technical Paper

An Investigation of the Effects of Roll Control on Handling and Stability of Passenger Vehicles During Severe Lane Change Maneuvers

1995-02-01
950305
The control of body roll on passenger vehicles can be used as a tool for controlling the “weight shift” that occurs during maneuvering. Distribution of load to the tires will determine the ability of each tire to generate lateral forces required for the maneuver and thus will significantly affect handling. In this investigation, the effects on weight shift and hence, on handling, of total roll stiffness, front to rear roll stiffness distribution, total roll damping, and roll damping distribution were examined. These results were then used to guide the development and analysis of several roll control algorithms. The results of the investigation indicate that roll control can be effective in improving handling and stability. However, simulation of the control algorithms showed that the controllers must be specifically tuned for the vehicle in which they are to be used.
Technical Paper

The Effects of Roll Control for Passenger Cars during Emergency Maneuvers

1994-03-01
940224
A nonlinear eight degree of freedom vehicle model has been used to examine the effects of roll stiffness on handling and performance. In addition, various control strategies have been devised which vary the total roll couple distribution in order to improve cornering capability and stopping distance. Of all cases tested, a controller which varies the total roll stiffness based on roll angle feedback, and continuously updates the roll couple distribution as a function of steering wheel angle, braking input, and the total roll stiffness, yields the greatest improvements in collision avoidance.
Technical Paper

An Investigation of the Pulse Steer Method for Determining Automobile Handling Qualities

1993-03-01
930829
The use of pulse steering tests for assessment of handling qualities was investigated using a simulation of a comprehensive, nonlinear four wheel model of an automobile. Evaluations were conducted using frequency response functions of yaw rate and lateral acceleration obtained by FFT processing of the simulated response. In addition, as suggested by the work of Mimuro et al [1], four parameters (steady state yaw rate gain, yaw rate natural frequency and damping ratio, and lateral acceleration phase lag at 1 Hz) that characterize these response functions were also obtained by curve fitting techniques. The effects on accuracy of the response functions and the four parameters of variations in pulse shape, duration, and magnitude were investigated. Results from the simulated pulse steer test were compared with those from simulated swept sine steering tests.
X